
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-03-1560
Approved for public release;
distribution is unlimited.

Title: ParaView: An End-User Tool for Large Data Visualization

Author(s): James Ahrens, Berk Geveci, Charles Law

Submitted to: Technical Report

ParaView: An End-User Tool for Large Data Visualization

James Ahrens Berk Geveci, Charles Law
 Los Alamos National Laboratory Kitware, Inc.

Abstract
This paper describes the design and features of a visualization tool, called ParaViewi, a tool for
scientists to visualize and analysis extremely large data sets. The tool provides a graphical user
interface for the creation and dynamic execution of visualization tasks. ParaView transparently
supports the visualization and rendering of large data sets by executing these programs in parallel
on shared or distributed memory machines. ParaView supports hardware-accelerated parallel
rendering and achieves interactive rendering performance via level-of-detail techniques. The
design balances and integrates a number of diverse requirements including the ability to handle
large data, ease of use and extensibility by developers. This paper describes the requirements that
guided the design, identifies their importance to scientific users, and discusses key design
decision and tradeoffs.

Introduction
Sensors and scientific simulations are generating unprecedented volumes of data making
visualization with traditional visualization solutions difficult or even impossible. To address the
simulation scientists’ visualization needs we spoke with simulation scientists and gathered a set
of requirements. The high-level requirements that guided the design of ParaView are support for
an efficient workflow and support for the visualization and analysis of extremely large datasets.
The challenge was to create a design and implementation that met both these complex
requirements and balanced conflicts between them.

Workflow requirements
Visualization is one task of many for simulation scientists. Other simulation tasks include:
theoretical work, programming, problem setup, analysis and data management. Therefore, the
first workflow requirement is tool ease of use. That is, how long it takes to create results and what
visualization domain knowledge is required to run the tool will determine whether the tool is used
and how often. A coarse approximation of the simulation scientists’ visualization workflow
includes two modes: an exploratory mode, in which an interactive graphical user interface(GUI)-
based tool is used to explore a dataset; and a batch mode, in which a scripting or programming
language is used to write and execute a program that creates an animation. The second workflow
requirement is support for both modes. This coarse approximation can be refined further
identifying how data is input (during the simulation run or after processing of the simulation is
complete) and what type of interface is used (GUI, scripting, VR)1. Additional workflow
requirements include tool portability, accessibility and extensibility. Portability is required
because of the diverse collection of resources available to scientists to run their simulations and
visualizations. Tool accessibility is the ability to quickly gain access to, setup, possibly modify
and run the tool. Open-source projects are more accessible since the package is typically available
on the Internet and any necessary tool modifications can be done quickly because the source is

i ParaView is an open-source package and can be downloaded at www.paraview.org.

available. We define extensibility as the ability to easily add new functions and graphical
interfaces to the tool.

Large data visualization requirements
The ability to handle large data is also a critical requirement. We define large data as data that
exceeds the resource limits (i.e. the elements of the storage hierarchy – memory, disk, tape) of a
single machine. The first aspect of the large data handing requirement is a functional one; can the
data be visualized at all? Techniques such as data streaming (i.e. processing the data
incrementally) and parallelism can be used to process large data sets. Workflow requirements,
such as portability, mandate that the tool execute on both shared and distributed-memory parallel
machines. The second aspect of the large data handling requirements is performance; can the data
be processed quickly? Techniques such as multi-resolution representations and parallelism can be
used to improve both visualization and rendering performance.

Related Work
There are a number of visualization packages available for use by scientists. Each of these
packages meets a subset of the identified requirements. In this section, we will discuss a few of
these packages, specifically AVS2, OpenDX3, SCIRun4 and Ensight5 identifying their strengths
and describing which requirements they meet. ParaView was designed to meet all the identified
workflow and large data visualization requirements.

Workflow requirements
Ensight and ParaView use a graphical user interface to execute visualization tasks. AVS,
OpenDX and SCIRun use dataflow program graph editor to compose programs. Dataflow
program graph editors were thought to provide a good tradeoff between the needs of visualization
developers and end-users: for developers, they provide the ability to create complex program
graphs and for end-users they provide a graphical interface to create these graphs. In practice,
learning visual programming with dataflow graphs is considered by many scientists a significant
barrier to creating visualization tasks and thus they consider GUI-based interfaces easier to use.
OpenDX, SCIRun and ParaView are all open-source packages making them easily accessible and
extensible. These packages offer interactive and batch interaction modes. SCIRun provides
support for computational steering – the ability to interact with and visualize data from a running
simulation. In contrast to these other packages, ParaView uses a general purpose scripting
language, Tcl, for batch commands. Advantages of using a general purpose scripting language
include the availability of general purpose computing functionality, robust documentation and
support for the scripting language that is independent of the visualization tool.

Large data visualization requirements
All of these packages are portable to most architectures when run on a single machine.
Differences arise on their portability to parallel architectures. AVS, OpenDX and SCIRun all
support parallel execution on shared memory machines. They also all rely on a centralized
executive to allocate memory and execute programs. This reliance makes it difficult to port these
packages to distributed memory machines. Ensight uses a client/server architecture, the client
renders geometry and the server executes visualization and analysis tasks. Ensight currently
provides a shared-memory implementations of both the client and server. Ensight also has a
distributed-memory implementation of the server. ParaView is portable to both shared and
distributed-memory machines. ParaView is the only listed package that can incrementally process
data.

The ability to process datasets larger than the available computing resources is a key
consideration when processing extremely large datasets since resource availability changes over
timeii.

Design
ParaView is designed as a layered architecture. The foundation is the visualization toolkit
(VTK).6,7 It provides the foundation of ParaView: data representations, algorithms and a
mechanism to connect these representations and algorithms together to form a working program.
The second layer is the parallel extensions to the visualization toolkit. The parallel VTK layer,
extended VTK to support streaming of all data types and parallel execution on shared and
distributed memory machines.iii The third layer is ParaView itself. ParaView provides a graphical
user interface and transparently supports the visualization and rendering of large data sets via
hardware acceleration, parallelism and level-of-detail techniques. Each layer meets a subset of the
requirements and adds additional functionality to the layer below.

Visualization Toolkit
The Visualization Toolkit is the foundation of the ParaView architecture. VTK provides data
representations for a variety of grid types including structured (uniform and non-uniform
rectilinear grids as well as curvilinear grids), unstructured, polygonal and image data. Examples
of these grid types are shown in Figure 1. VTK provides hundreds of visualization and rendering
algorithms that process these data types including isosurfacing, cutting/clipping, glyphing and
streamlines. VTK also provides algorithms for polygon and volume rendering and a keyboard and
mouse-based interaction model. Algorithms are organized into dataflow program graphs and a
demand-driven dataflow execution model is used to run these programs. Core functionality in
VTK is written in C++. To use the toolkit, VTK offers both a C++ library interface and set of
scripting interfaces including Java, Python and Tcl interfaces. The library interface provides the
best performance. The scripting interfaces offer the advantage of rapid prototyping of programs.
Once a day and continuously (i.e. whenever a developer commits a change) tests are run using an
open-source testing framework, called Dart, which improves the toolkit’s reliability. The toolkit
provides the basis for ParaView’s portability, accessibility, full range of features and support for
interactive and scripting usage modes. More details on VTK can be found in this book in a related
chapter on the toolkit.

Parallel and Distributed Visualization Toolkit
Additional functionality was added to VTK to support data streaming and parallel computation.8
Both depend upon the ability to break a dataset into smaller pieces. Data streaming incrementally
processes these smaller pieces one at a time. Thus, a user can process an extremely large dataset
with computing resources that cannot store the entire dataset (either in memory or on disk). Data
streaming requires that all VTK data types are separable into pieces and the toolkit algorithms
correctly process these pieces. To process pieces in a dataflow pipeline, a mapping must be
defined that specifies for each algorithm what portion of the input data is required to generate a
portion of the output data. With this information, algorithms can generate only a portion of their
output for a given input. Each algorithm must ensure program results are invariant, regardless of
how the dataset is broken into pieces. These requirements are met by creating a partitioning of
both structured and unstructured grid types and by providing ghost levels which are points/cells
that are shared between processes and are used by algorithms which require neighborhood

ii ParaView’s data streaming feature is available in batch mode.
iii These extensions are currently part of the toolkit but were added after the original design of the toolkit
was complete.

information. A piece of a structured grid is defined by its extent which describes a contiguous
range of elements in each dimension (i.e. in 3D, a sub-block of a complete block). VTK’s
unstructured grid types use an “element of a collection” scheme (i.e. piece M of N). A procedure
for converting between grid types was also defined in which each structured extent piece maps
one-to-one to an unstructured piece. Additional policies take care of handling boundary
conditions and creating ghost levels for all grid types. This data streaming ability supports data
parallelism. Instead of processing pieces one of the time, each processor processes a different
piece in parallel. Examples of dataset partitioning and the creation of ghost levels are shown in
Figure 2. Figure 2 shows a CTH non-uniform rectilinear grid data set that was processed in 8
pieces. The original data set contained cell centered attributes. Volume fraction attributes for
both the projectile and plate were first interpolated to vertices before an isosurface filter was used
to extract the material surfaces. Both the vertex interpolation and normal generation require
ghost cells to ensure partition invariant results.

Figure 1: The figure shows the different types of data sets that VTK and ParaView can handle. The
upper left dataset is a uniform rectilinear volume of an iron potential function. The Upper right
image shows an isosurface of a non-uniform rectilinear structured grid. The lower left image shows
a curvilinear structured grid data set of airflow around a blunt fin. The lower right image shows an
unstructured grid data set from a blow molding simulation.

Parallel communication and control classes encapsulate details of process initialization and
communication libraries such as a shared-memory implementation or MPI. The streaming and
parallel computing features can be accessed both thru a C++ library interface and via a set of
scripting interfaces. These feature extensions provide the basis for ParaView’s large data
functionality and performance requirements.

Figure 2: The image on the left was generated
with a CTH data set partitioned into eight pieces. Each piece was assigned a different color. The
image on the right shows only one partition with six extra ghost levels. The cells are colored by ghost
level. In practice, usually only one ghost level is necessary.

ParaView
ParaView provides a graphical user interface for the interactive exploration of large data sets. It
builds this functionality on parallel and distributed VTK. An overview of the tool from a user
perspective is presented first, followed by a technical description of how the tool’s functionality
is achieved.

Overview
A sample ParaView session is shown in Figure 3. There are several regions to the user interface
including the Menu Bar along the top of the application, the Toolbar just below the Menu Bar, the
Left Panel on the left side and the Display Area on the right side. Each of these areas is described
in more detail below:

• The Menu Bar: The top menu bar provides menu buttons for loading and saving data,
creating sources and filters, viewing other windows, displaying help, and other standard
functionality.

• Toolbar: The Toolbar contains buttons for resetting the camera, switching between 2D
and 3D interaction modes, and changing the center of rotation. In addition, the Toolbar
contains shortcut icons to instantiate some commonly used filters.

• Left Panel: The top portion of this panel contains the selection or navigation window.
The selection window provides a list of instantiated sources and filters. The navigation
window provides a dataflow program graph representation of the user’s task. The area
below the selection/navigation window is where the properties of sources and filters are
set, which we refer to as a property sheet. Property sheets contain module settings such as
the current isosurface values computed by the isosurface module.

• Display Area: The Display Area is where the 3D representation of the scene is rendered.
Mouse and keyboard interaction are provided in this area.

Figure 3: ParaView

To add new filters the user selects a source or filter from the Source or Filter menu on the Menu
Bar. Sources include various types of readers or computer-generated sources. A sample of the
possible filters includes:

• Contours and isosurfaces can be extracted from all data types using scalars or vector
components. The results can be colored by any other variable or processed further. When
possible, structured data contours/isosurfaces are extracted with fast and efficient
algorithms that make use of the structured data layout.

• Vectors fields can be inspected by applying glyphs (currently arrows, cones and spheres)
to the points in a dataset. The glyphs can be scaled by scalars, vector component or vector
magnitude and can be oriented using a vector field.

• A sub-region of a dataset can be extracted by cutting or clipping with an arbitrary plane,
specifying a threshold criteria to exclude cells and/or specifying a volume of interest (for
structured data types only).

• Streamlines can be generated using constant step or adaptive integrators.iv The results
can be displayed as points, lines, tubes and ribbons and can be processed by a multitude
of filters.

• The points in a dataset can be warped/displaced with scalars or with vectors.
• With the array calculator, new variables can be computed using existing point or cell

field arrays. Many scalar and vector operations are supported.

iv A parallel implementation of streamlines is not currently available, this feature is under development.

• Data can be probed on a point or along a line. The results are displayed either graphically
or as text and can be exported for further analysis.

ParaView provides many other data sources and filters by default including edge extraction,
surface extraction, reflection, decimation, extrusion and smoothing. Any VTK source or filter can
be added to ParaView by providing a simple XML description for its user interface for its
property sheet.

The Source and Filter menu are dynamically updated to contain a list of sources/filters that can
input the output of the currently selected module. The selected module is either the last module
created, or the one most recently selected from the Selection/Navigation Window. Once a module
is chosen, a new instantiation of the module is created, connected to the selected module and the
module’s property sheet is displayed. In this manner, a dataflow program graph is created. In
order to manipulate or view the properties of a module, the module is selected and its property
sheet is shown and the user can view or edit the listed values.

Meeting the workflow requirements
ParaView simplifies its use by minimizing the knowledge of dataflow programming required by
users to use the tool. Specifically, a user can specify simple tasks, for example, creating a source
and applying simple filters, without needing to be aware of dataflow programming. This is
because ParaView’s default behavior is to add new modules to the last module created. When the
user wants to change this behavior, for example to apply another filter to the source data, they can
use the Selection Window to reset the location where the new module will be added. ParaView
also simplifies the choice of modules by only listing modules which accept the correct data type
for insertion. For advanced users who wish to create complex program graphs, the program graph
is available for manipulation in Navigation window. ParaView is designed so that visualized
results dominate the GUI real-estate and the manipulation of program graphs is relegated to a
much smaller area. This allows scientists to focus on their visual analysis and not on visual
programming which is typically of secondary importance to them.

When modules are instantiated in ParaView they create visual output in the display area
providing immediate visual feedback to the user about their data and the effect of the applied
module. For example, as shown in Figure 3, when the user creates a two-dimensional source, in
this case, a fractal source, ParaView automatically creates a color mapping of the data. This
feature improves ease of use because it provides default settings, freeing the user from this task.
This feature does have a downside; it hampers the ability to stream data since every module
instantiation would cause ParaView to stream visual results. For now, we have chosen to only
permit data streaming in batch mode. Solutions to this problem include: offering the option of
turning on and off interactive data streaming as well as offering the option of turning on and off
the immediate feedback feature.

Users can change the parameters of some modules directly by interacting with the 3D view
shown in the Display Area using 3D manipulators. For example, the user can manipulate the seed
line of a streamtrace filter by clicking on a control point and dragging the line to the new location.
There are also 3D manipulators for probing a dataset with a point or line and cutting or clipping a
dataset with a sphere or plane. 3D manipulators improve ease of use by allowing users to quickly
apply visualization modules to datasets by letting them interactively use the mouse to select
location parameters instead of setting the parameters numerically in the user interface. When the
manipulator is adjusted interactively in the 3D view, the numerical values of the location
parameters are updated in the user interface and the user can then fine tune these values.

ParaView is portable to most architectures. To achieve this, only packages that work across many
platforms were used in developing ParaView. For example, to achieve a portable user interface,
Tk, was chosen. Tk, is the graphical user interface companion to the Tcl scripting language. The
application framework at the core of ParaView is a unique blend of Tcl/Tk and C++. Tk is used
as the widget set but C++ objects, which provide higher-level UI components, are created to
encapsulate the widgets. Like VTK objects, these C++ UI objects are automatically wrapped in
Tcl.

ParaView’s user interface can be modified and extended both statically with XML configuration
files and dynamically, at runtime, using the Tcl scripting interface. All ParaView modules and
their corresponding user interface are initialized by parsing XML based configuration files. These
files contain the input/output types of the modules, an icon name to be displayed on the toolbar, a
list of widgets to be displayed on the module’s parameter page, the corresponding module
parameters and in case of reader modules information about the file type. For example, Figure 4
present the XML description listed in ParaView default configuration file and corresponding user
interface for isoline/isosurface module.

<Module name="Contour" class="VTKPVContour" module_type="Filter" root_name="Contour"
 button_image="PVContourButton" output="VTKPolyData" input="VTKDataSet">
 <Filter class="VTKPVContourFilter"/>

 <InputMenu id="im" label="Input" trace_name="Input" input_name="PVInput”

input_type="VTKDataSet"/>
 <ArrayMenu id="am" input_name="Input" attribute_type="Scalars"
 label="Scalars" input_menu="im" number_of_components="1"/>
 <ScalarRangeLabel array_menu="am"/>
 <ContourEntry label="Contour Values" trace_name="Contour Values"/>
 <LabeledToggle label="Compute Normals" variable="ComputeNormals"/>
 <LabeledToggle label="Compute Gradients" variable="ComputeGradients"/>
 <LabeledToggle label="Compute Scalars" variable="ComputeScalars"/>
</Module>

Figure 4: XML description for the isoline/isosurface module in ParaView and corresponding user
interface generated by the XML

Since all ParaView widgets have corresponding Tcl representations, the GUI can be modified at
runtime by loading scripts or typing commands at a command console. This allows the user to,
for example, add new widgets, create dialog windows or load additional libraries at runtime.
These features can be used to customize what modules are loaded and how they are presented to
the user. A visualization developer can edit the ParaView GUI configuration file and write
custom scripts to customize ParaView for use by specific application users. For example, for the
climate modeling community, a configuration file could be written to add a suite of climate

analysis modules and customize the existing modules such as contouring to meet community
conventions. ParaView meets the accessibility requirement because it is available in open-source
form.

Recall that, a coarse approximation of the simulation scientists’ workflow includes two modes, an
interactive mode, in which an interactive GUI-based tool is used to explore a dataset, and a batch
mode, in which a program is executed to create an animation. ParaView supports both these
modes. ParaView’s interactive mode was detailed in the overview section. Every interaction with
the ParaView GUI can be saved in a session file since every interaction has a corresponding Tcl
command. The session file can be reloaded to reproduce the session. Furthermore, since the
session file is a Tcl script, it can be edited/modified and then reloaded to obtain different results.
In addition to dataset exploration, the interactive mode is also used to create to programs to run in
batch. ParaView also supports saving the current program graph as a VTK script. A series of
queries allow the user to customize the script. A session script differs from a VTK script because
a session script saves every ParaView interaction (i.e. every interaction used to create a program
graph) and a VTK script saves only a program graph.

Meeting the large data visualization requirements
ParaView supports large data visualization via techniques that include parallel processing, level-
of-detail rendering and data streaming.

Parallelism and data streaming
ParaView supports parallelism, either using shared-memory processes or distributed-memory
processes via MPI. When ParaView is run in parallel, data is automatically read, processed and, if
necessary, rendered in a data parallel manner. ParaView’s parallel software architecture includes
three types of processes, a client process that runs the graphical user interface and two types of
server processes: root and slave processes. The client process communicates with the root server
process by broadcasting commands. The root server process receives these commands and re-
broadcasts them to all slave servers. A command is a script; currently, a Tcl script is used. In the
future, user may be able to select the scripting language to use, for example, Python or java. All
servers run an interpreter and use it to execute received commands. This communication
mechanism is used to create a copy of the same program graph on each process. The program
graphs on the servers manipulate pieces of the full dataset for data parallel processing and the
program graph on the client is used to store program state such as parameter settings for modules.
ParaView’s user interface elements update the client’s program graph and the changes are sent as
scripts to the root and slave servers. For example, when a user creates a filter module, such as an
isosurface, a script is created that instantiates, sets parameters, and appends the isosurface module
to a program graph. This script is then communicated to and interpreted by both the client and
server processes. All processes use the same naming convention and thus one script works for all
process’s program graphs. All program graphs are initialized with a rendering module.

To implement parallel algorithms, communication between processes is handled internally by the
modules in the program graphs. For example, all rendering modules communicate to implement a
parallel rendering algorithm. Although the client can be considered a centralized executive,
ParaView’s design supports independent process decisions and actions as much as possible. For
example, the decision to allocate memory occurs locally. Also inter-process communication is
limited to program instantiation/execution commands and parallel algorithms.

ParaView supports data streaming in batch mode. When the user writes a batch script, an option
prompts the user as to whether they would like to stream their data and what memory limit they

are bounded by. Streaming along with data parallelism are effective techniques for processing
large datasets and effectively fulfill ParaView’s large data visualization requirement. We have
used these techniques to efficiently and effectively isosurface and color a collection of datasets
that ranged in size from 10’s of gigabytes to approximately a petabyte in size8.

Level-of-detail and parallel rendering
ParaView’s rendering module supports both level of detail and parallel rendering techniques9 to
facilitate the rendering of very large datasets interactively. Interactive rendering of large datasets
is an extremely challenging problem and therefore we applied a number of techniques to achieve
good performance.

Level-of-detail techniques increase rendering performance at the expense of image quality. Two
different LOD techniques are used in ParaView: geometric LOD and rendered image LOD. The
geometric LOD technique creates a reduced geometric resolution model. In general, models with
less geometric elements render faster than with more elements. When the user is interacting with
model (i.e. rotating, translating, zooming) a reduced resolution model is used in order to render
quickly. When the interaction is complete, the full-resolution model is rendered. Figure 5 shows
an example of the full and reduced resolution model. VTK’s quadric clustering algorithm is used
to simplify surfaces. This algorithm preserves data attributes, so the LOD models have the same
visual appearance of the original data. Timing results for the decimation algorithm are given in
Table 1. Decimation can introduce significant visual artifacts in the rendered image. However,
we have concluded that these artifacts are acceptable during interactive rendering. Decimation
can also work well with the geometry redistribution technique discussed later in this section. The
smaller decimated models can easily be collected and rendered locally.

Figure 5: The full-resolution surface (left) has 821,495 triangles and renders in intermediate mode in
0.93 seconds on a GeForce2 GTS, and the decimated surface (right) has 35,400 triangles and renders
in 0.04 seconds.

 Time To Decimate
1 Processor 6.25 Seconds
2 Processors 3.515 Seconds
4 Processors 1.813 Seconds

Table 1: The full-resolution surface has 821,495 triangles, and the decimated surface had
approximately 35,400 triangles.

The rendered image LOD technique involves rendering to a small image and using pixel
replication to magnify the image for final display. It is essentially lossy compression of the

image that has no compression cost and minimal decompression cost. Although the resulting
visual artifacts are noticeable, they do not significantly impair interaction with the data set. This
technique reduces rendering times through all steps listed below. Initial rendering times can be
faster because fill areas are smaller. The time to read and composite image buffers is reduced
because it is directly proportional to the area of the rendered image.

Using data parallelism in the renderer is also critical for high performance. The renderer is always
in one of two states: an interactive state when the user is interacting with the GUI and a still state
when the user is not. The steps of the rendering algorithm are described below. Note that
ParaView’s geometry and image data can be either serial or parallel data and this may change
during execution. The algorithm below is applied to each geometric object to be rendered:

1. If (Rendering state is interactive) then apply geometric and image LOD algorithm –

a. The geometric LOD algorithm is applied when an estimate of the time to render the
object (based on the number of points in the object) exceeds a user modifiable
threshold. When the threshold is exceeded rendering occurs with a reduced resolution
version of the object. If a reduced resolution version does not exist one is created.

b. The image LOD algorithm is applied when the time to render the last frame exceeds a
user modifiable threshold. Using the previous frame time as an estimate a new image
size is calculated, in order to reduce rendering time to below the threshold.

2. If (Geometry data is parallel) then apply parallel geometry load redistribution

algorithm – The result of the LOD algorithm is geometry data. If there is parallel geometry
data, this data can be redistributed from its current location on the processes to a subset of the
processes. For example, if the geometry is small enough (i.e. after it is reduced by Step 1a) it
can be more efficient to collect and render the geometry on a single process. This avoids the
cost of parallel image compositing (i.e. Step 4). In this future, this step will also be used to
balance geometric load across processes for more efficient performance.

3. Rendering - The result of the redistribution algorithm is geometry data. A rendering

operation then renders this geometry to create an image and depth buffer result of the image
size set in Step 1b. Rendering can be serial or parallel, hardware or software-based, and occur
either onscreen or offscreen.

4. If (Image data is parallel) than apply parallel image compositing - If there is parallel

imagery, then this image data is composited together using the depth buffer to resolve
conflicts to create a final image. ParaView currently supports a binary tree compositing with
an option of using run-length encoding to losslessly compress images for speed10. With large
window sizes and many processes, this communication time can be the major factor limiting
rendering performance. Compositing transmission time grows linearly with render window
area and scales logarithmically with the number of processes. This is why both Step 1a and
1b offers methods (collecting geometry to a single process and compositing using smaller
images) to either skip or speedup this compositing step.

Notice that different paths through these steps are possible. For example, a reduced level-of-detail
model can be rendered locally when the renderer is in the interactive state and the full resolution
version of the same model can be rendered in a parallel when the renderer is in the still state.
Having the ability to render at different resolutions and speeds, allows the user to interactively
focus on an area of interest and then study the details of a full-resolution image and meets the
large data rendering requirement.

Results
This section presents visualization results generated by ParaView for several application areas.

Figure 6 shows isosurfaces of the visible woman data set. The 512x512x1734 900 MB dataset is
composed of seven sections. Each section is a uniform rectilinear grid generated by a CT scan.
Two isosurfaces were extracted, one for bone and one for skin. The skin isosurface was clipped
in order to reveal the bone isosurface. On block of the skin was colored by process id to show the
data partitioning. ParaView was run with 4 server processes in this example. This example also
demonstrates ParaView's ability to process multi-block data sets. Many structured data sets divide
the domain into blocks. Each block is configured to get the best resolution sampling for its
domain. Since some data sets can have hundreds of blocks, it is important to group these blocks
into a single entity that can be filtered in one step. ParaView has group and ungroup filters,
which simplify processing of multi-block datasets.

Figure 7 shows streamlines generated by ParaView using a dataset of airflow around a delta wing.
This example also shows the 3D line widget used to seed the streamline algorithm. The
streamline filter propagates integration across partition boundaries, and can execute in parallel.
The delta wing and the contour surface were obtained by extracting sub-grids from the original
curvilinear dataset. Since the actual dataset contains only half the wing due to symmetry, a
reflection filter was applied to all surfaces. Both surfaces were colored by mapping the stagnation
energy through a default lookup table.

Figure 8 shows the results of a batch script on the results from the Parallel Ocean Program (POP).
The 3600x2400x40 structured grid model the earth’s oceans at 1/10 of a degree resolution.
Isosurfaces and extracted geometry are shown and are used to represent land masses. Also a clip
plane colored by temperature at a depth of 1140 meters is shown. It is worth noting that climate-
specific visualization tools are unable to process datasets of this magnitude.

Conclusions
This paper presents the design of ParaView, an end-user tool for large data visualization.
ParaView provides a graphic user interface for visualizing large datasets using techniques that
include data parallelism, level-of-detail and streaming to meet its workflow and large data
visualization requirements. In the future, there are number of directions to extend ParaView
including the incorporation of data streaming into user interface and rendering support of
extremely large datasets for tiled display walls. ParaView is an open source tool and members of
visualization community are invited to add new features.

Acknowledgments
This work was supported by grants from the US Department of Energy ASCI VIEWS program.
We acknowledge the Advanced Computing Laboratory of the Los Alamos National Laboratory,
where we performed portions of this work on its computing resources.

Figure 6: The Visible Woman dataset in ParaView

Figure 7: The Delta Wing dataset in ParaView

Figure 8: View of the Atlantic Ocean from a global 1/10th of a degree simulation showing ocean
temperature at a depth of 1,140 meters generated by a ParaView batch script

References
1 R. Knight, J. Ahrens, P. McCormick, “Improving the Scientific Visualization Process with
Multiple Usage Modalities”, LAUR-001619.
2 C. Upson et al., “The Application Visualization System: A Computational Environment for
Scientific Visualization,” IEEE Computer Graphics and Applications, vol. 9, no. 4, July 1989, pp.
30-42.
3 G. Abrams and L. Trenish, “An Extended Dataflow Architecture for Data Analysis and
Visualization,” Proc. IEEE Visualization 1995, IEEE CS Press, Los Alamitos, Calif.,1995, pp.
263-270.
4 S.G. Parker, D.M. Weinstein, and C.R. Johnson, “The SCIRun Computational Steering
Software System,” Modern Software Tools in Scientific Computing, E. Arge, A.M. Brauset, and
H.P. Langtangen, eds., Birkhauser Boston, Cambridge, Mass., 1997, pp. 1-40.
5 K. Misegades “EnSight's Parallel Processing Changes the Performance Equation”,
http://www.ceintl.com/products/papers.html.
6 W. Schroeder, K. Martin and W. Lorensen, “The Design and Implementation of an Object-
Oriented Toolkit For 3D Graphics and Visualization” Proc. IEEE Visualization 1996, IEEE CS
Press, Los Alamitos, Calif., 1996, pp. 263-270.

7 W.J. Schroeder, K.M. Martin, and W.E. Lorensen, The Visualization Toolkit An Object-
Oriented Approach to 3D Graphics, Prentice Hall, Upper Saddle River, N.J., 1996.
8 J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, M. Papka, “ Large-Scale Data
Visualization Using Parallel Data Streaming,” IEEE Computer Graphics and Applications, vol.
21, no. 4, July/August 2001, pp. 34-41.
9 S. Molnar et al., “A Sorting Classification of Parallel Rendering,” IEEE Computer Graphics and
Applications, vol. 4, no. 4, July 1994, pp. 23-31.
10 J. Ahrens and J. Painter, “Efficient Sort-Last Rendering Using Compression-Based Image
Compositing”, Proc. of the Second Eurographics Workshop on Parallel Graphics and
Visualization, 1998, 145-151.

